
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 16,777-791 (1993) 

TREATMENT OF VORTEX SHEETS FOR THE TRANSONIC 
FULL-POTENTIAL EQUATION 

T. Q. DANG 
Depcrrtrnent of Mechanical, Aerospace and Manufucturing Engineering, Svracuse C'nkersity, Syrucuse, NY 13244, U.S.A.  

SUMMARY 

This paper summarizes a combined analytical~computational technique which models vortex sheets in 
transonic potential-flow methods. In this approach, the inviscid nature of discontinuities across vortex 
sheets is preserved by employing the step function to remove singularities at these surfaces. The location and 
strength of the vortex sheets are determined by satisfying the flow-tangency boundary condition and the 
vorticity transport equation. The theory is formulated for the general three-dimensional case, but its 
application is confined to the problem of computing slipstreams behind propellers with free-vortex blading 
in axisymmetric flows. 
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1. INTRODUCTION 

Transonic-flow computational methods based on the full-potential equation have played an 
important role in the past decade in the design of fuel-efficient aircrafts. In particular, the 
finite-volume algorithm of Jameson and Caughey,',' a generalization of the type-dependent 
differencing concept of Murman and Cole,3 has been widely used. In addition, progress in 
three-dimensional grid generation methods4 along with the development of the multigrid tech- 
nique5v6 has greatly improved the usefulness of the full-potential approach. Consequently, a large 
number of transonic potential-flow codes are routinely used in industry. 

The irrotational-flow assumption prevents the full-potential approach from predicting accu- 
rately the flows in which the effect of the vorticity field is important. For example, the calculations 
of shock location and shock strength by the full-potential method deteriorate as the shock Mach 
number increases because of the neglection of the vorticity field generated behind these shocks. In 
this case, several authors7-' have improved shock calculations through the use of Euler correc- 
tion methods. These authors have shown that the Euler correction methods yield shock calcu- 
lations similar to those using Euler methods'O3 '' for both two- and three-dimensional flows in 
the presence of strong shocks. In addition, the Euler correction method has been employed to 
model the rotational flowfield behind propellers with forced-vortex blading." 

Another weakness of the full-potential approach is its inability to model accurately vortex 
sheets such as the trailing-vortex sheet shed behind a finite wing or the slipstream behind 
a propeller with free-vortex blading. As the full-potential method does not satisfy the dynamic 
condition on these vortex sheets (i.e. the vorticity transport equation), it is necessary to use 
simplified models to describe these vortex sheets. In the case of the trailing-vortex sheet, its 
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location is usually taken to be the grid surface emanating from the wing trailing edge, and the 
vortex strength is modelled using the linearized wing theory.2 In the case of the propeller 
slipstream, its location is taken to be the grid surface emanating from the propeller tip, and the 
equal-pressure condition across the propeller slipstream is approximately satisfied by enforcing 
the jump in the magnitude of the velocity along an assumed d i re~t ion . '~  

With the recent interest in the fuel-efficient aft-fuselage-mounted propfan airplane, accurate 
calculations of these vortex sheets become critical. For example, the designer is concerned with 
the location of the propeller installation so as to make sure that the wing wake does not intersect 
the propeller disk. In this case, the method proposed by Steinhoff and Ramachandran'' can be 
used to handle this problem. Also, studies1'* indicate that accurate propeller-airframe interfer- 
ence calculations require an accurately defined propeller slipstream geometry. 

This paper presents an approach to model vortex sheets using the existing full-potential 
methods. The idea is to remove singularities in the flowfield at the vortex sheets using generalized 
f~nct ions : '~  all discontinuities are expressed in terms of the step function. The location and 
strength of the vortex sheets are determined by satisfying the flow-tangency boundary condition 
and the vorticity transport equation, respectively. The technique presented in this paper can be 
considered to be the external-flow version of the 'smoothing' expansion developed 
earlier for periodic internal flows. Although the purpose of this paper is to introduce a technique 
of capturing various types of vortex sheets for full-potential methods, a simple example of its 
actual use is presented to facilitate the task of describing the technique. The example chosen is tb- 
capturing of propeller slipstream surfaces which arise from the presence of nacellemounted 
counter-rotating propellers with free-vortex blading. 

2. POTENTIAL-MULTIENERGY FLOW ACTUATOR DISK MODEL 

Recent advances in turboprop or Ultra High Bypass (UHB) engine development have stimulated 
great interests in advanced propfan airplane design. The concern of an airplane designer is not 
focused on the details of the blade-to-blade flowfield, but rather on the interference effects of the 
propfan on the airframe. In this case the simple actuator disk model appears to be more than 
adequate.12.13.19,20 Furthermore, recent ~ o r k ' ~ . ' ~  has indicated that the detailed structure of 
the rotational flow field within and behind the propeller, namely, the propeller bound and trailing 
vorticities, does not play an important role in propeller-airframe interference studies. Hence, an 
actuator disk with free-vortex blading can be used to simulate propeller effects effectively; the 
prescribed jump in the stagnation enthalpy across the actuator disk, denoted by Aho, is assumed 
to be constant (Figure 1). In addition, the counter-rotating propeller is assumed to be ideal so that 
the flow is isentropic across the propeller and the jump in the circumferential velocity (or swirl) 
across the propeller is zero. 

Using the above model, the flowfield consists of two potential-flow regions, each having 
different prescribed stagnation conditions, separated by a bound-vortex sheet at the actuator disk 
and a free-vortex sheet on the propeller slipstream (Figure 1). This model is called the poten- 
tial-multienergy flow actuator disk model in this study. In this example, the location and strength 
of the bound-vortex sheet is prescribed, while those of the free-vortex sheet are not known a priori 
and must be determined during the calculation. Across this free-vortex sheet, two conditions must 
be satisfied: 

1. The Jlow-tangency boundary condition. This is a kinematic condition which is satisfied by 
ensuring that the vortex sheet coincides with the stream surface emanating from the tip of 
the propeller. 
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Figure 1. Potential-multienergy flow actuator disk model for a counter-rotating propeller 

2. The equal-pressure condition. This is a dynamic condition which can be satisfied by invoking 
the vorticity transport equation. As the two potential-flow regions have different stagnation 
conditions, this condition implies that the velocity vector is discontinuous in magnitude and 
possibly in direction (i.e. for three-dimensional flows) across this vortex sheet (Figure 1). 

For the purpose of completeness, it is interesting to note that in practice, it is more useful to 
prescribe the propeller thrust loading coefficient rather than the jump in the stagnation enthalpy 
across the actuator disk. Using the one-dimensional, incompressible-flow Froude-Rankine 
analysis, the jump in the stagnation enthalpy across the actuator disk is related to the thrust 
loading coefficient by 

Ah O - 2  - I (  a ' ) ,  

where Tis the thrust, Q is the dynamic pressure, and Ad is the propeller frontal area. Equation ( 1 )  
is used as the initial guess for the required stagnation enthalpy jump corresponding to the 
prescribed thrust loading coefficient. The actual thrust loading coefficient is computed from the 
momentum integral equation using the converged solution. Numerical experiments have shown 
that this relationship is accurate throughout the practical range of the thrust loading coefficient. 

3. PRIMITIVE APPROACH 

A conceptually easy-to-understand procedure to handle the discontinuity at the free-vortex sheet 
is to use a full-potential approach with boundary conforming grid at the propeller slip- 
stream.l3Sz1 In this method, the grid line leaving the actuator disk tip is either assumed to be the 
slipstream, or modified during the calculation to conform to the actual slipstream. The equal- 
pressure condition, which requires 

is satisfied by enforcing a double-valued potential along this grid line. Here qA and qB are the total 
velocities on the propeller slipstream in region A and region B, respectively (Figure 1). 

Although this rather simple approach appears to be attractive, it has several restrictions and 
disadvantages: 
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1 .  The enforcement of the equal-pressure condition through equation (2) is not complete 
because it does not say anything about the direction of the velocity jump. In the axisymmet- 
ric casc, this condition can be satisfied exactly since the directions of the velocities qA and 
yR are known. However, in the general three-dimensional case, the velocity jump is known 
to lie on the propeller slipstream surface, but its direction must be extracted from the 
vorticity transport equation. In practice, the jump in the velocity is assumed to be along the 
streamwise grid lines. 

2. The required use of the adaptive grid technique to satisfy the propeller slipstream kinematic 
condition is not desirable because it tends to slow down convergence and can introduce 
instabilities into the calculation. 

4. PRESENT APPROACH 

The results and findings of the investigation described in Section 3 suggest the usefulness of 
a technique which does not require the fitting of a grid surface to the propeller slipstream during 
the calculation. In addition, accurate modelling of this vortex sheet requires the satisfaction of the 
vorticity transport equation which describes the convection of the vortex filaments lying on this 
surface. The ‘smoothing’ technique described in this section is such a technique. 

4.1. Sinoothing technique 

The smoothing technique16 consists of removing the singular part of the flowfield at the vortex 
sheet through properly chosen generalized functions. Consider the velocity profile at an axial 
location which crosses a vortex sheet, its location being at l = O  (Figure 2). In this case, the 
velocity is decomposed into two parts: 

u ( i )  =uo(l.)+ H(b)Au.  ( 3 )  

In equation (3),  the step function denoted by H(3,) is used to represent the velocity jump Au across 
the propeller slipstream. As a result, the remaining part of the flowfield denoted by uo(%) is 
smooth. Here the step function H(A)  is defined as 

1, 7.30, 
0, i < O .  

H(iJ = 

Recall that the gradient of the step function is related to the Dirac delta f ~ n c t i o n ’ ~  

V H  = S(E”)VJ”, 

q- + 

(4) 

- u(A) - u,(A) + H(A)AU 

Figure 2. ‘Smoothing’ technique applied to velocity 
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where the Dirac delta function 6( i )  is defined as zero everywhere except at 2=0 and 

6 (i) d i  = 1 .O. 

4.2. The orv 

In this section, the smoothing technique is applied to the problem of simulating propeller 
effects using the potential-multienergy flow actuator disk model (see Section 2).  In general, as the 
velocity vector is allowed to have a jump not only across the propeller slipstream, but also across 
the actuator disk, it can be expressed as 

V = V 4  + H(z*)H([ )AhoVt ,  (7) 

where z* = z - zdlsk = 0 defines the actuator disk plane, and i =f(z) ~ Y = 0 defines the propeller 
slipstream surface (Figure 3). 

Taking the curve of equation (7), the vorticity vector takes the form 

f2 = d(z*){ff([)Ah,[f^, x Vt] 1 + 6(i)(H(z*)Ah, ,  [V[ x Vt] ). (8) 
As required, the vorticity vector is Lero everywhere except at the actuator disk [first term on the 
right-hand side of equation (X)] and at the propeller slipstream [last term on the right-hand side 
of equation (S)]. In equation (7), the Clebsch22 representation of the velocity vector is employed. 
This type of decomposition of the velocity vector into potential and rotational parts has been 
extensively employed in the calculations of three-dimensional rotational flows in turbomachines 
up to the subcritical flow regime using mostly analytical appro ache^.^'-^' Recently, an Euler 
correction method was developed based on the Clebsch transformation to  model shear flows in 
full-potential methods such as the vorticity field generated behind shocks’ and the rotational 
flowfield behind propellers with forced-vortex blading. l 2  Similar use of the Clebsch transforma- 
tion has been proposed by Steinhoff and Rama~handran’~  to handle the wakes in helicopter 
rotor flowfields. 

To determine the flowfield, these Clebsch variables are chosen to satisfy the equations of 
motion. For steady flow, the continuity equation is 

(9) v * (pV) = 0, 
while the momentum equation written in Crocco’s form for isentropic flow is 

V X Q = V h o + F ,  (10) 

r = f ( z )  

-7 
d i s k  z = z  z 

bigure 3. Geometrical definitions 
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where F is a body force per unit mass. This body force term is similar to the prescribed 
finite-volume force vector employed by Whitfield and Jameson” in their calculation of propel- 
ler-airframe interaction. In the present model (Figure l), given the locations of the actuator disk 
and the propeller slipstream, the stagnation enthalpy field can be expressed as 

ho=hOm + H(z*)H([)Aho. (1 1) 

F =s(~*)H(i)[F,e^,+F,e^,]  (12) 

Furthermore, the body force F is concentrated at the actuator disk and can be expressed as 

In the present approach, the potential part 4 in equation (7) is determined using the continuity 
equation, while the Clebsch variable f is chosen to satisfy the momentum equation. On substitu- 
ting equations (8), (11) and (12) into equation (lo), along with the use of vector identities, the 
following are obtained. Along the actuator disk, the momentum equation reduces to 

Aho{((V)d .Vt)e^,-((V)d *e^z)Vf)=F,e^,+ F,e^,+Aho&,, (1 3) 

where ( )d denotes the average value in front and behind the actuator disk. Equating terms in the 
same direction, the body force per unit mass can be computed from 

at 

dar F,.=-AhO(V) -, 

F, =-*Ao (1 - (Y.).;) 

(14) 

Similarly, along the propeller slipstream behind the actuator disk, the momentum equation 
reduces to 

((V>, . v t ) V i  -((V).5 - VOVt = Vi, (16) 

where ( >, denotes the average value above and below the propeller slipstream. On imposing the 
flow-tangency boundary condition on the propeller slipstream, namely, 

(V>, - vc = 0, 

(V), * Vt = 1 .  

(17) 

(18) 

the governing equation for the Clebsch variable t is obtained: 

Conceptually, the Clebsch variable t is the classical Darwin-Lighthill-Hawthorne drift func- 
tion.22’ 2 8  In the general three-dimensional case, the variation of t from streamline to streamline 
lying on the propeller slipstream surface is directly connected to the stretching and tipping of the 
vortex filaments located on this surface. In fact, the drift function not only enforces the 
equal-pressure condition across the propeller slipstream, but also specifies the direction of the 
jump in the velocity, namely, 

q B - q A  =Ah,Vt. (1 9) 

Note that equation (19) combined with equation (18) is the generalization of equation (2). In 
principle, the flowfield can be computed by solving iteratively between the governing equation for 
the potential part [equation (9)] and the governing equations for the rotational part [equations 
(1 7) and (18)] subject to appropriate boundary conditions. The following subsections describe 
methods of solving these equations, along with the iterative procedure employed to determine the 
flowfield. 
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4.3.  Solution method for the potential function 

As mentioned in Section 4.1, the potential part q5 in the expression for the velocity vector is 
chosen to satisfy the continuity equation. In the present study, the finite-volume full-potential 
method of Jameson and Caughey' is employed to determine the potential part. In this numerical 
scheme, the discretized quasi-linear form of the potential equation utilized for formulating the 
relaxation scheme is 

L"{@!?' -@ 1 . J  1 3  I . }= -RES? .  1 , 1 3  (20) 

where n is the iterative level. In equation (20), the operator L on the correction is derived from the 
potential equation, and RES is the residual of the continuity equation. 

When the present power method is included, the general form of the operator L remains 
unchanged. The only modifications involved are in the evaluations of the cell-averaged velocity, 
speed of sound and density which appear in the expression for the residual RES and in the 
coefficients of the operator L. 

As an illustration for the method of computing cell-averaged quantities, consider the velocity 
vector. According to equation (7), the velocity vector takes on appropriate forms, depending upon 
the location of the cell under consideration (Figure 4). In the present study, the grid is constructed 
to conform to the specified actuator disk location and size but not to the propeller slipstream 
location since it is not known a priori. Hence, in general, there exist cells which lie in both regions 
A and B, such as cell AB shown in Figure 4. In this case, the method of area-weighted average is 
used to evaluate the cell-averaged quantities. For cell A, which lies in region A, the cell-averaged 
velocity is computed from 

v = v4. (21) 

V =  Vb, + Ah,Vt (22)  

For cell B, which lies in region B, the cell-averaged velocity is computed from 

and, finally, for cell AB, which lies in both regions, the cell-averaged velocity is computed from 

where A A  is the cell area which lies in region A, and As is the cell area which lies in region 
B (Figure 4). This type of area-weighting is similar to the 'cloud in cell' of Baker.29 
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Figure 4. Method of area-weighted average applied to cell-averaged quantities 
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4.4.  Solution method for  the drift function 

Ia the present formulation, the drift function t is employed to describe the convection of the 
vortcx rings lying on the propeller slipstream. Hence, it is necessary to compute the drift function 
on the slipstream surface only. The distribution of the drlft function t inside the propeller 
slipstream can be taken arbitrarily since, according to equation (7), it merely redefines the 
potential function there. The governing equation for t [equation (1 S)] can be simplified by 
invoking the propeller slipstream kinematic condition. Along the propeller slipstream, in addition 
to equation (17). the flow-tangency boundary condition also requires the jump in the velocity 
across this surface to be tangent to it. On using equation (19), this condition translates to 

vt .vi=o.  (24) 

Equation (24) imposes a constraint on the derivatives of t and, along with the definition of [ from 
Section 4.2, can be used to reduce equation (18) to 

Since the drift function itself is not used in the present formulation, but rather its gradient, the 
Clebsch variable t is updated during the calculation simply through algebraic relationships, 
namely, equations (24) and (25). In the general three-dimensional case,3o a two-dimensional 
hyperbolic equation must be solved to determine the drift function. 

4.5. Solution method for the propeller slipstream locution 

Using the definition of i defined in Section 4.2, the propeller slipstream kinematic condition 
[equation (1 7)] reduces to 

(26) df < uz= < Vr),. 

Given the velocity field from the previous iteration step, the propeller slipstream location is 
determined by integrating numerically equation (26) from the actuator disk to the downstream 
region. The initial location of the propeller slipstream is at the tip of the actuator disk. 

Two types of power simulation modes have been developed to investigate the importance of the 
propeller slipstream geometry. In the assumed propeller slipstream mode, the propeller slip- 
stream is taken to be the grid line emanating from the tip of the actuator disk and is kept fixed 
during the calculation. In the computed slipstream mode, the initial guess of the propeller 
slipstream is chosen to be this grid line, but the propeller slipstream geometry is continuously 
updated during the calculation through equation (26). The outcome of this investigation will be 
discussed in Section 5. 

4.6. Iterutive procedure 

defined in equation (7). The following iterative procedure is employed: 
The flowfield is determined by solving iteratively between the potential and the rotational parts 

1. Set the initial velocity field to the freestream condition. 
2. Update the potential function y5 by advancing one multigrid cycle using a modified version 

of a finite-volume full-potential method described in Section 4.3. In this step, the imple- 
mentation of the area weighted- averaged procedure to compute cell-averaged quantities 
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results in an increase of 25%" in the computing time per iterative cycle over the original full- 
potential method. 

3 .  Update the drift function t through algebraic relationships [equations (24) and (25)]. The 
computing time required in this step is negligible compared to the second step since the 
calculation is performed only on the propeller slipstream behind the actuator disk. 

4. If the assumed slipstream mode is employed, bypass this step. Otherwise, in the computed 
slipstream mode, the propeller slipstream i is updated through equation (26). Again, the 
computing time required in this step is negligible compared to the second step. 

5. Repeat steps 2-5 until convergence is attained. 

Numerical experiments show that the increase in the computing time per multigrid cycle is 
roughly 30% relative to the original code. These calculations also show that in the practical range 
of the thrust loading coefficient, the number of cycles required to obtain a converged solution 
comparable to the prop-off case is only slightly increased, indicating that the present scheme is 
efficient. Finally, this proposed iterative procedure is stable throughout (he practical range of the 
thrust loading cocficient. 

5. RESULTS 

Thc proposed method of handling vortex sheets has been implemented into an axisymmctric 
full-potential code3' to simulate power effects for isolated nacelles at zero degree anglc of attack. 
Generation of the computational grid is accomplished using the hybrid conformal-map- 
ping-algebraic technique of H a l ~ e y . ~  This method conforms grid lines to a specified actuator 
disk location and size, along with the option of conforming the grid lines to an estimated location 
of the propeller slipstream. 
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Figure 5. Comparison of surface pressure and total velocity distributions for nacelle A at M ,  =0.2 and TjQA,, = 2 0 
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Figure 6 Comparison of surface pressure and total velocity distributions for nacelle B at M, = O  8 and T/QA,=O.2 

Figure 5 shows comparisons of the surface pressure and total velocity distributions for the 
nacelle A between the prop-off and the prop-on cases at the subsonic flow regime (M,=0.2, 
T/QA,=2.0). As expected, the effects of power are to accelerate the flow in front of the propeller 
and to produce an increase in the static pressure across the propeller. In the absence of swirl, the 
computed farfield static pressure approaches the freestream condition. For incompressible flow, 
as is nearly the case here, the velocity is continuous across the actuator disk as required by the 
continuity equation. As the stagnation condition in region B is greater than that in region A, the 
farfield velocity within the propeller slipstream is greater than the freestream velocity, typically 
a two-to-one ratio in the practical subsonic regime. Figure 6 shows the same comparisons for the 
nacelle B at the transonic cruising condition ( M ,  =08, T/QA, =02). Here the overall trend is the 
same as in Figure 5, except that compressibility effects do allow for a jump in the velocity across 
the actuator disk. Also, at the transonic cruising condition, the farfield slipstream-to-freestream 
velocity ratio is small, typically of the order of 1.1 for these advanced propellers. Consequently, 
the problem of capturing propeller slipstream surface is more difficult in the subsonic-flow regime 
than in the transonic-flow regime: propeller slipstream contraction is higher, and discontinuity in 
the velocity vector across the propeller slipstream is larger. 

Plate I illustrates contour plots of pressure coefficient increments ACp at the practical subsonic 
( M ,  = 0.2, T/QAd = 2.0) and transonic ( M ,  = 0.8, TIQA, = 0.2) flow regimes around nacelle C.  
Here the pressure coefficient increment is defined to be the difference in the pressure coefficient 
between the prop-on and prop-off solutions. The actuator disk is located at the axial station 
where a sharp jump in ACp exists. This figure, along with line plots of AC, as a function of radial 
location at selected axial stations behind the actuator disk,33 show that the pressure field is 
continuous across the propeller slipstream. This figure also indicates that propeller effects are 
much more pronounced in the practical subsonic flow regime than in the transonic flow regime. 
Plate 2 illustrates similar contour plots for the velocity increment AV. This figure shows a sharp 
jump in AT‘ across the propeller slipstream behind the actuator disk. A closer look at the line 
plots of A V as a function of radial location at selected axial stations behind the actuator disk’j 
show that the discontinuity in the velocity across the propeller slipstream is captured within one 
mesh point with no oscillation. 
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To investigate the sensitivity of the solutions to the grid distributions, calculations were carried 
out using the grids shown in Figure 7. Compared to the standard grid used in the earlier 
calculations, the distributions of the grid lines in grid A are forced to conform to the propeller 
slipstream as seen by the contraction of the grid lines behind the actuator disk. Grid A contains 
96 x 24 cells. On the other hand, the grid lines in grid B are purposely chosen to deviate from the 
propeller slipstream shape, as seen by the divergence of the grid lines behind the actuator disk. Tn 
addition, the number of cells in the axial direction in grid €3 is reduced by half, i.e. to 48 x 24 cells. 
Figure 8 shows the grid lines emanating from the tip of the actuator disk taken from grids A 
and B. These grid lines are used either as the actual or the initial guesses for the propeller 
slipstream location in the following cakulations. 

Figure 9 illustrates comparisons of the nacelle surface pressure distributions between the 
prop-off and the prop-on cases which are computed using the grid A and grid B distributions. To 
demonstrate the importance of defining accurately the slipstream geometry, the plot on the left of 
Figure 9 shows the comparison with the prop-on solutions running in the assumed slipstream 
mode: the initial propeller slipstream shapes, shown in Figure 8, are kept fixed during the 
calculation. This figure shows that the predicted prop-on solutions are highly dependent on the 
propeller slipstream shape. On the other hand, when the computed slipstream mode is employed, 
namely, the propeller slipstream shape is continuously updated during the calculation, the 
predicted prop-on solutions are virtually identical. In fact, the computed fdrfield propeller 
slipstream radius taken from the converged solutions using grids A and B are r/Rdisk =0.9175 and 
0.9087, respectively. 
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Figure 7. Illustration of grid A and grid B 
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Figure 8. Illustration of grid lines emanating from tip of actuator disk taken from grid A and grid B 
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Figure 10. Effect of grid on convergence history 

Figure 10 shows the comparisons of the convergence history for the calculations presented in 
Figure9. Two observations can be drawn from this figure. First, in both the assumed and 
computed slipstream mode calculations, the convergence rate of the grid A prop-on solution is 
roughly the same as that of the original prop-off solution while the convergence rate of the grid 
B prop-on solution deteriorates relative to that of the original prop-off solution. This indicates 



*CP 
- 0.2 

- 0.1 

0.0 

0.1 

0.2 

Plate I. Contour of pressure coefficient increment about nacellc C 

AV 
0 .7  

0 . 6  

0.5 

0.4 

0.3 

0 . 2  

0.1 

0 . 0  

Hate 2. Contour of vclocity increment about nacelle C 



789 TRANSONlC F ULL-POTENTIAL EQUATION 

- 1  5 THEORY (PROP-OFF) 

THEORY (PRO?-ON) _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ - - - - - - - -  
, I  

-1.0 - I ,  o TEST DATA (PROP-OFF) I A TEST DATA (PROP-ON) 1 
- 0 5  

aJ 
U 

ct 0.0 
rt- 
aJ 
0 
0 

QI 
L 
2 
m 
vl 
(11 
L 
a 

*r 

-7 

0.5 

I5 

2 0  

2 5  

3 0  
-1.0 C.0 1.0 2.0 5.0 4.0 5.0 6.0 7.0 8.0 9.0 10 0 11.0 12.0 

axial location 
Figui-e 1 I .  C'omparisons of surface pressure distributions between thcoretical predictions arid experimental data 

that in the general three-dimensional case, such as angle of attack and/or complex configurations, 
the situation corresponding to grid B is likely to be encountered and it is expected that more 
iterations are required to obtain converged solutions comparable to the original prop-off 
solutions. Second, for a given grid distribution, Figure 10 indicates that the convergence rate 
between the assumed and computed slipstream modes are virtually the same. This figure indicates 
that the present method of computing vortex sheets is efficient. 

Finally, Figurc 1 1 illustrates an excellent agreement in the surface pressure distribution 
between comput;itional results and experimental data in the subsonic-flow regime at a relatively 
high thrust loading coeficient. Note that the comparison is not only good in front of the propeller 
but also behind the propeller, even though the flowfield is expected to be highly rotational in the 
region within the propeller slipstream behind the propeller. 

6. CONCLUSIONS 

This paper prest:nt s a numerical technique for handling vortex sheets in full-potential methods. 
The idea i s  to remove singularities in the flowfield at  the vortex sheet using the 'smoothing' 
technique: all discontinuities are expressed in terms of the step function. In addition, the location 
and strength of the vortex sheets are determined by satisfying the flow-tangency boundary 
condition and the vorticity transport equation. 



790 T. Q. DANG 

In order to facilitate the task of describing the technique, the example of computing propeller 
slipstream, which arises from the modelling of a counter-rotating propellcr by an actuator disk 
with free-vortex blading, is presented. In this case. the flowfield consists of two potential-flow 
regions of different stagnation conditions, separated by a bound-vortex sheet at the actuator disk 
and a free-vortex sheet on the propeller slipstream. Along the propeller slipstream, both the 
kinematic condition (flow-tangency boundary condition) and the dynamic condition (vorticity 
transport equation) are satisfied. This method has been successfully embedded into a finite- 
volume full-potential code for the simulation of propeller effects about isolated nacelles in 
axisymmetric flows. The same method has also been implemented into an aft-fuselage/pylon/ 
nacelle computer code to study power effects in the presence of a counter-rotating propfan of the 
pusher type.30 

The following conclusions can be extracted from the numerical experiments: 

1. The method preserves the inviscid nature of discontinuities across vortex sheets because the 
scheme does not contain numerical dissipation. 

2.  i he  method gives solutions which are insensitive to mesh distribution. 
3. The method is not penalized in the convergence rate when the computed slipstream mode is 

employed. 

The examples used in this paper (for axisymmetric flows) and in Reference 30 (for thrce- 
dimensional flows) involve vortex sheets that do not have excessive distortions. I n  cases where the 
vortex sheet5 have large deformations, such a5 the rolling up of the trailing-vortex sheet near the 
wing tip, the theory presented here is still valid, but a more elaborate numerical technique is 
needed to track the position of the vortex sheet. The use of Clcbsch variables lo track highly 
distorted material lines in inviscid shear layers has been d e m ~ n s t r a t e d . ~ ~  In this method, 
a uniformly second-order-accurate, non-oscillatory convection scheme is used to solve the 
convection equations representing the rotational component of the flowfield. 
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